MÉTODOS CONSTRUCTIVOS DE PUENTES ATIRANTADOS – ESTUDIO DE LA DISTRIBUCIÓN DE FUERZAS EN LOS TIRANTES

María Fernanda Quintana Ytza¹

Resumen Los puentes atirantados consisten de un tablero soportado por cables rectos e inclinados (tirantes) fijados en los mástiles. Este tipo de estructura es altamente hiperestática, bastante sensible a la secuencia constructiva, sin embargo debido a la flexibilidad del tablero, este acepta una gama considerable de fuerzas de instalación de los tirantes. Es importante escoger una distribución apropiada para estas fuerzas sobre carga permanente, tal que la flexión del tablero sea limitada. La presente investigación tiene como objetivo estudiar diferentes métodos para la obtención de una buena distribución de fuerzas en los tirantes de los puentes atirantados. Los métodos estudiados en esta investigación son: método del tablero articulado (una articulación en cada intersección con los tirantes - MTA), método de anulación de los desplazamientos (MAD), método de anulación de las reacciones en apoyos ficticios (MAR) y método de anulación de los desplazamientos a lo largo del proceso constructivo. La idea final de todos ellos, es obtener para el tablero una respuesta próxima a la de una viga continua. Pero, si fuera necesario, también se pueden controlar los desplazamientos del mástil. Los tres primeros métodos son estudiados para la configuración final del puente, pero también fueron verificados sus resultados en el proceso constructivo, ya que durante esta etapa ocurren variaciones en los esfuerzos internos del puente alterando así el resultado final. Todos los resultados son comparados con la finalidad de escoger un método que además de controlar la configuración final del puente presente una distribución aceptable de fuerzas al final de la construcción. De esta forma, se puede obtener una buena estimativa de fuerzas de instalación de los tirantes.

Palabras clave: Puentes atirantados; tirantes; fuerzas de instalación

1 Introducción

Los puentes atirantados consisten de un tablero soportado por cables rectos e inclinados (tirantes) fijados en los mástiles. Se han tornado más comunes debido a su economía y estabilidad para vanos grandes (200 a 1000m) pero principalmente por la apariencia atractiva. Tienen tres partes principales: tablero, mástiles y tirantes. El tablero es soportado elásticamente en varios puntos a lo largo de su extensión por cables inclinados (tirantes) fijados en el mástil. Las cargas permanentes e móviles son transmitidas al mástil mediante los tirantes con una estructura reticulada, con tirantes traccionados mientras el mástil y el tablero quedan comprimidos.

Este tipo de estructura es altamente hiperestática, bastante sensible a la secuencia constructiva, sin embargo, debido a la flexibilidad del tablero, este acepta una considerable gama de fuerzas

¹ Ing. Civil. (Universidad de Montevideo). Alumna de maestría de la USP - Escola Politécnica. Depto de Engenharia de Estruturas, SP – Brasil- maria.ytza@poli.usp.br
de instalación de los tirantes. Es importante escoger una distribución inicial apropiada para estas fuerzas sobre carga permanente, tal que, la flexión en el tablero sea limitada. Como el puente es construido por fases y es mixto (acero y hormigón), debido a que tiene piezas de hormigón como el mástil y el tablero que sufren retracción y fluencia; el puente también sufre de estos fenómenos. Estos efectos alteran la deformaciones y los esfuerzos internos en estos puentes, haciendo que los esfuerzos tiendan o se aproximen a aquellos que se obtienen a una obra moldada “in loco”. Por esta razón, es importante tener una buena distribución de fuerzas en la configuración final. Es importante destacar que los inevitables desvíos de construcción alteran estos valores. Por tanto, siempre es conveniente tener el tablero e su protensión dimensionados con un cierto margen que tolere estos desvíos.

La presente investigación tiene como objetivo estudiar diferentes métodos para la obtención de una buena distribución de fuerzas en los tirantes de puentes atirantados. Desde la década de 1970 autores como BEHN, CHEN, JANIC, WANG, etc., han estudiado diferentes tipos de métodos para la obtención de fuerzas de instalación en los tirantes.

Teóricamente es posible encontrar una distribución de esfuerzos permanentes que aseguren desplazamientos nulos en el tablero de forma que ellos se comporten como una viga continua.

Los métodos estudiados en esta investigación son: método del tablero articulado (una articulación en cada intersección con los tirantes – MTA), método de anulación de los desplazamientos (MAD), método de anulación de las reacciones en apoyos ficticios (MAR) y el método de anulación de los desplazamientos a lo largo del proceso constructivo. La idea final de todos ellos es obtener para el tablero una respuesta próxima a la de una viga continua. Pero, si fuera necesario, también se pueden controlar los desplazamientos del mástil. Los tres primeros métodos son estudiados para la configuración final del puente, pero también fueron verificados sus resultados en el proceso constructivo, ya que durante esta etapa ocurren variaciones en los esfuerzos internos del puente alterando así el resultado final. Por ejemplo, se el puente fuera construido por dovelas sucesivas, esa secuencia ejecutiva altera los esfuerzos.

El estudio de retracción y fluencia esta fuera del alcance de este trabajo. Sin embargo, la consideración de estos fenómenos en la determinación de las fuerzas de instalación de los tirantes puede ser llevada en consideración teniendo en cuenta sus efectos sobre las flechas del tablero o sobre las reacciones en los apoyos ficticios del tablero.

2 Método Constructivo

El concepto de un puente debe ser seleccionado teniendo en cuenta el número de parámetros específicos relacionados con las características de la nueva unión que será construida.

Debido a su importancia, tanto del proceso constructivo como por la influencia en el arreglo estructural y en la evaluación de los esfuerzos solicitantes durante la fase constructiva, el asunto recibe un tratamiento de destaque dentro de la tecnología de la construcción de los puentes (El Debs et all, 2007).

Los principales métodos constructivos de los puentes e viaductos atirantados son:

- Cimbramiento general;
- Dovelas sucesivas;
- Lanzamientos progresivos.
a) Cimbramiento general

Este método es usado, generalmente, cuando el puente está localizado en una zona de baja altura y suelo con buena capacidad resistente. El cruce no está congestionado con rutas o vías de tren, y el puente no tiene que atravesar una corriente de agua.

b) Dovelas sucesivas

El método consiste en la construcción de la obra en segmentos (dovelas), formando trechos que avanzan sobre el vano a ser vencido. Existen dos técnicas básicas para la construcción de puentes mediante el sistema de dovelas sucesivas; una de ellas emplea dovelas pré-moldadas, las cuales se levantan mediante guinches y otros equipamientos y la otra técnica consiste en construir las dovelas “in loco”.

Cuando las dovelas son moldadas “in loco”, el hormigonado es ejecutado con auxilio de encofrados deslizantes ancladas en los trechos ya construidos y cuando se alcanza la resistencia de proyecto establecida las dovelas son protendidas.

Las dovelas pré-moldadas son fabricadas en el obrador y transportadas por medio de reticulados metálicos hasta la extremidad del voladizo, donde son protendidas longitudinalmente. Entre las dovelas se puede usar o no adhesivo epóxi que sirve para lubrificar la superficie, disminuir los efectos de las imperfecciones de las juntas entre las mismas, impermeabilizar la junta y contribuir para la transmisión de las tensiones provenientes de los esfuerzos cortantes.

c) Lanzamientos progresivos

En este método, la superestructura es fabricada en las márgenes de la obra y es empujada para su posición final a lo largo de los vanos. Esta se comporta como un voladizo a medida que va avanzando hasta encontrar el próximo apoyo. Cada segmento es ejecutado sobre formas metálicas fijas, siendo hormigonado contra el anterior ya concluido, permitiendo continuidad en la armadura de la región de las juntas.

La estructura es empujada por gatos hidráulicos y sobre aparatos de apoyo deslizantes de Teflón sobre los pilares que, dependiendo del tamaño del vano, pueden ser permanentes o provisionales. Una vez que el trecho delantero de la estructura queda en voladizo hasta alcanzar los apoyos, se utiliza un reticulado metálico fijado a este lugar que alcanza el apoyo antes de la estructura disminuyendo el voladizo y reduciendo el momento negativo durante la fase constructiva.

3 Ejemplo de Aplicación

Este ejemplo consta de un puente atirantado de 346m de extensión, 186m de vano central y 80m de vano lateral. Posee cuatro pilares de 70m de altura y un total de 56 tirantes, arreglados en forma de abanico. (Figura 1)

![Figura 1: Puente atirantado](image_url)

Se establece que el tablero es solidario a los pilares y esta dividido en 15 dovelas de 12,4m, 12 dovelas de 11,4m y dos dovelas de cierre lateral de 5,7m.
La sección transversal del tablero posee dos vigas longitudinales que sirven de apoyo a la losa, también posee 61 vigas transversales. Las dimensiones que fueron elegidas para el conjunto del tablero están presentadas en la Figura 2. Las vigas transversales están dispuestas a cada 6,22m y poseen 0,4m de ancho y altura de 1,5m.

![Figura 2: Sección del tablero y vigas transversales (medidas en metros)](image)

Los mástiles tienen una altura aproximada de 45m y cada uno de ellos sirve de soporte a 14 tirantes, 7 en cada uno de los dos planos longitudinales. Fue propuesta una sección transversal rectangular de 4,8m por 2,1m.

El puente tiene 56 tirantes arreglados en forma de abanico; estos fueron numerados como muestra la Figura 3.

![Figura 3: Numeración de los tirantes](image)

El material utilizado en este modelo es acero CP 177 RB (NBR - Norma Brasileria) y las secciones de los tirantes dependen de la carga que cada uno debe soportar, por tanto, todos tienen un diámetro diferente. (Tabla I).

<table>
<thead>
<tr>
<th>Tirantes</th>
<th>N° de cordones</th>
<th>$A_{efectiva}$ (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>29</td>
<td>0.08437</td>
</tr>
<tr>
<td>E3</td>
<td>27</td>
<td>0.08110</td>
</tr>
<tr>
<td>E4</td>
<td>24</td>
<td>0.07661</td>
</tr>
<tr>
<td>E5</td>
<td>21</td>
<td>0.07182</td>
</tr>
<tr>
<td>E6</td>
<td>18</td>
<td>0.06746</td>
</tr>
<tr>
<td>E7</td>
<td>16</td>
<td>0.06317</td>
</tr>
<tr>
<td>E8</td>
<td>18</td>
<td>0.06608</td>
</tr>
<tr>
<td>E9</td>
<td>20</td>
<td>0.07098</td>
</tr>
<tr>
<td>E10</td>
<td>24</td>
<td>0.07660</td>
</tr>
<tr>
<td>E11</td>
<td>27</td>
<td>0.08137</td>
</tr>
<tr>
<td>E12</td>
<td>30</td>
<td>0.08651</td>
</tr>
<tr>
<td>E13</td>
<td>33</td>
<td>0.09029</td>
</tr>
<tr>
<td>E14</td>
<td>36</td>
<td>0.09476</td>
</tr>
</tbody>
</table>

Tabla 1: Propiedades geométricas de los tirantes
Los tirantes “E1” y “E28” son los tirantes de estabilidad, que, a diferencia del resto, son los que soportan la carga de todo el tablero. Estos deben tener 53 cordones, o sea, un área de 0,11455m².

3 Determinación de las fuerzas de instalación de los tirantes
En el correr de los años fueron establecidos varios métodos para definir estas fuerzas. La elección de estos métodos esta fuertemente ligada a la etapa de proyecto y la preferencia del proyectista.

Básicamente se pueden citar cinco métodos:
- Método del tablero articulado en todos los tirantes (MTA)
- Método de anulación de los desplazamientos (MAD)
- Método de anulación de las reacciones sobre apoyos ficticios (MAR)
- Método de anulación de los desplazamientos a lo largo del proceso constructivo

a) Método del tablero articulado en todos los tirantes (MTA)
Este método establece que cada tirante soporta aproximadamente el peso del trecho entre dos tirantes (dovela). Por tanto, si se considerara el peso propio de cada dovela, se puede obtener la fuerza inicial y el área de los tirantes. Es un método simple usado por los proyectistas como primera aproximación del problema.

Primero, se implementa el modelo con articulaciones en todos los tirantes, para esto se utiliza un modelo plano con articulaciones en la unión entre los tirantes y el tablero. De esta forma son obtenidas las fuerzas en los tirantes debidas al peso propio. Luego, tomando en cuenta las propiedades de los tirantes, son calculados los gradientes de temperaturas necesarios para protenderlos y así soportar sus respectivas cargas.

Para el cálculo de la temperatura son consideradas las siguientes variables:

\[F \] : fuerza en el tirante debido a la carga de peso propio
\[E' \] : módulo de elasticidad de Dischinger
\[A \] : área de la sección transversal del tirante
\[l \] : longitud del tirante
\[\Delta l \] : variación de longitud del tirante
\[\Delta T \] : variación de temperatura
\[\alpha \] : coeficiente de expansión térmica, adoptado como 1,17 x 10⁵

La variación de longitud de una barra debido a un gradiente de temperatura es:

\[\Delta l = \alpha \cdot l \cdot \Delta T \] (1)

La variación de longitud de una barra debido a una fuerza axial F es:

\[\Delta l = \frac{F \cdot l}{E \cdot A} \] (2)

Igualando las ecuaciones (1) y (2):

\[\alpha \cdot \Delta T = \frac{F}{E \cdot A} \] (3)

Por tanto, la variación de temperatura de un tirante referente a una fuerza F es:

\[\Delta T = \frac{F}{\alpha \cdot E \cdot A} \] (4)
b) **Método de anulación de los desplazamientos (MAD)**

La primera publicación que trata de este método fue en el 1993, WANG et al; donde se determinan los esfuerzos de los tirantes para alcanzar la geometría deseada del puente después de la construcción. Este método está basado en el concepto de que el tablero se comporta como una viga continua, pero no considera la distribución de tensiones en el mástil o en el tablero proveniente de las tensiones aplicadas. Mientras que BEHN y MURRAY (1992) y CHEN et. al. (2000) establecían que la geometría final del puente debía ser independiente de las tensiones de los tirantes y debía ser definido tomando en cuenta la contra-flecha del tablero.

En este método el objetivo es anular los desplazamientos verticales (\(\delta \)) cuando el tablero está sometido a la carga permanente (peso propio). Esta es una tarea difícil ya que la estructura es hipermática y de esta forma si un tirante fuera protendido, las fuerzas de los tirantes vecinos se verían modificadas.

La metodología está basada en determinar el conjunto de fuerzas \([F]\) de los tirantes tal que la flecha debida al peso propio, en la unión de los tirantes con el tablero, sea nula. La ecuación de equilibrio es:

\[
[F_g] = [F] + [K]x[\delta]
\] \((5) \)

Donde:

- \([F_g]\): vector de las fuerzas de los tirantes debido a la carga del peso propio (unidad: KN)
- \([F]\): vector de las fuerzas en los tirantes debido a su protensión (unidad: KN)
- \([K]\): matriz de rigidez condensada porque considera solo los grados de libertad correspondientes a los desplazamientos verticales en las uniones tablero / tirante (unidad: KN/m)
- \([\delta]\): desplazamiento de la estructura en los puntos de unión entre los tirantes y el tablero (unidad:m)

El vector de las fuerzas de los tirantes \([F]\) (estado inicial de fuerzas de protensión), puede ser calculado de forma tal que \([\delta]\) de \((F + F_g)\) sea nulo. Como en este método las protensiones son simuladas por temperatura, es más práctico escribir la siguiente ecuación de compatibilidad:

\[
[\delta] = [D]x[F_g] + [D]x[F_0] = [D]x[F_g] + [D_T]x[T]
\] \((6) \)

Donde:

- \([D]\): matriz de flexibilidad condensada porque considera apenas como incógnitas las fuerzas en los tirantes (unidad: m\(^2\)/KN), es la inversa de la matriz \([K]\)
- \([D_T]\): matriz de flexibilidad condensada en términos de temperatura (unidad: m\(^2\)/°C)
- \([T]\): vector de temperatura en los tirantes (unidad °C)

El objetivo es calcular \([T]\) tal que \([\delta]\) sea nulo, esto equivale a escribir:

\[
[D_T]x[T] = -[\delta_g]
\] \((7) \)

El método consiste en aplicar a cada tirante una carga de temperatura unitaria \((T_0)\). Para cada uno, se colocan en una tabla los resultados de desplazamientos verticales \((\delta)\) de todos los nodos que corresponden a la intersección de los tirantes con el tablero. Es importante destacar...
que en el caso de los tirantes de estabilidad el desplazamiento utilizado para la matriz \([D_T] \) es aquel que está en la unión del tirante con el mástil. Esto es debido a que el desplazamiento correspondiente a la intersección entre el tirante y el tablero puede ser cero (apoyo en el tirante) o muy próximo a cero.

Después que los resultados fueron colocados en la tabla, se monta una matriz que contiene los desplazamientos del tablero en función de la temperatura aplicada. En esta matriz llamada \([D_T] \), cada columna representa los desplazamientos de todos los nodos del tablero para la carga \(T_i \). Por tanto, la primera columna representa los desplazamientos de todos los nodos para la carga \(T_1 \). El formato de la matriz es el siguiente:

<table>
<thead>
<tr>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>\ldots</th>
<th>(T_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamientos del tirante (1) para (T_1)</td>
<td>Desplazamiento del nodo 1 para (T_1) (\delta_{1i}(T_1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desplazamientos del tirante (1) para (T_1)</td>
<td>Desplazamiento del nodo 2 para (T_1) (\delta_{2i}(T_1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desplazamientos del tirante (1) para (T_1)</td>
<td>Desplazamiento del nodo 3 para (T_1) (\delta_{3i}(T_1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desplazamientos del tirante (1) para (T_1)</td>
<td>Desplazamiento del nodo (n) para (T_1) (\delta_{ni}(T_1))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cada elemento de la matriz representa un desplazamiento vertical correspondiente a un tirante debido a una carga de temperatura. Por tanto, \(\delta_{ij} \) es el desplazamiento del nodo \(i \) debido a la carga de temperatura en el tirante \(j \).

\[
[D_T] = \begin{pmatrix}
\delta_{11} & \cdots & \delta_{1n} \\
\vdots & \ddots & \vdots \\
\delta_{ni} & \cdots & \delta_{nn}
\end{pmatrix}
\tag{8}
\]

Los desplazamientos obtenidos cuando cada uno de los tirantes está cargado, son pequeños y conducen a un sistema de ecuaciones relativamente mal condicionado. Si intentamos resolver la ecuación (7) invirtiendo directamente la matriz \([D_T]\), el resultado es malo.

Por tanto, para la resolución de este problema, se consideran los siguientes procedimientos:

- El método para determinar el vector de temperaturas \([T]\) es el de los Mínimos Cuadrados (MMC). Esta es una técnica de optimización matemática que procura encontrar el mejor ajuste para un conjunto de datos intentando minimizar la suma de los cuadrados de las diferencias entre la curva ajustada y los datos (tales diferencias son llamadas de residuos). Para realizar las iteraciones del problema, se estableció que el residuo sea menor que \(1 \times 10^{-5}\).

- A partir del primer método (validación isostática de las fuerzas en los tirantes), son obtenidos los valores de la primera iteración para la resolución. Los resultados obtenidos en el SAP fueron analizados en el programa EXCEL. Para la obtención de las fuerzas finales fue utilizado el recurso llamado Solver.

A continuación se presenta un fluxograma (Figura 4) donde se explican todos los pasos a ser cumplidos para la utilización de este método.
c) Método de anulación de las reacciones en apoyos ficticios (MAR)

En 1993 LAZAR et. al. desarrollaron, por primera vez, un método para influenciar la distribución de momento en el tablero mediante un ajuste en las tensiones aplicadas en los tirantes. El mismo procedimiento fue utilizado por TROIJSKY (1988) y GIMNSING (1997); mientras que un método mas simple para obtener las tensiones de los tirantes fue desarrollado por AGRAWAL (1997).

El método de anulación de las reacciones en los apoyos ficticios fue propuesto por CHEN et. al. (2000); este se basa en la idea de obtener una buena distribución de momentos anulando los desplazamientos del tablero.

Se puede asumir que un puente atirantado, cuando esta sometido a carga de peso propio, se comporta como una viga continua y los tirantes, los apoyos donde la viga esta vinculada. Por tanto, con la carga anterior, cada tirante (representado por un apoyo), tendrá una reacción asociada. El método de anulación de las reacciones en apoyos ficticios está basado en la misma idea del método de anulación de los desplazamientos.

La idea es establecer un modelo del puente atirantado sometido a su peso propio con apoyos ficticios en todos los puntos de ligación de los tirantes con el tablero. Nuevamente es aplicado a

Figura 4: Fluxograma del Método de anulación de los desplazamientos
cada tirante una carga de temperatura unitaria \([T_i]\). Para cada uno de estos, los resultados de las reacciones en los apoyos ficticios son colocados en una tabla \([R_g]\). Después, se monta una matriz \([K]\) donde cada columna representa las reacciones de todos los apoyos ficticios. Se llama matriz de rigidez condensada, ya que representa parte de la matriz de rigidez de la estructura correspondiente a los grados de libertad de las uniones tirante / tablero y en el caso de los tirantes de estabilidad tirante / mástil (como en el MAD).

La reacción en los apoyos ficticios \([R]\) resultante de los efectos de temperatura \([T_0]\) es dado por:

\[
[K_R] [T] = [R]
\]

(9)

Designando el vector de las reacciones debido al peso propio de la estructura por \([R_g]\); el vector \([R]\) deberá ser igual a \(-[R_g]\).

Al igual que en el MAD, en este método son consideradas las mismas restricciones y son analizadas las mismas hipótesis. A continuación se presenta un fluxograma donde son explicados todos los pasos a ser cumplidos para la utilización de este método (Figura 5)

Figura 5. Fluxograma del método de anulación de las reacciones en apoyos ficticios

d) Método de anulación de los desplazamientos a lo largo del proceso constructivo

Las soluciones anteriores están basadas en la configuración final de la estructura y no toman en cuenta el proceso constructivo. Esto es bastante problemático, ya que el proceso constructivo o faseamiento influye considerablemente en la distribución interna de los esfuerzos en la
estructura completa (JANJIC et. al. 2003). El presente método anula los desplazamientos en la última dovela en cada fase de construcción (Figura 6).

El método de las dovelas sucesivas consiste en el montaje de módulos en las laterales de los mástiles; estos módulos están formados por el tablero con sus respectivos tirantes.

Generalmente, estas estructuras parciales que están siendo montadas son más flexibles que la estructura final y están sometidas a cargas de construcción que son diferentes de los esfuerzos del puente en la fase final. Surge la dificultad de proyectar un proceso constructivo que asegure que no existan tensiones muy altas en ninguna de las estructuras parciales de la secuencia. Con el fin de prevenir estas tensiones, se pueden utilizar apoyos temporarios, contra-pesos o ajustes transitorios en los tirantes para asegurar que las tolerancias no acumulen a tal punto que el puente no alcance su configuración final.

![Figura 6: Diagrama de fuerzas del tirante i en la fase constructiva](image)

Para cada fase constructiva (i) es obtenido el desplazamiento en la ultima dovela debido al peso propio $\delta_i(g_i)$. Luego, se calcula la protensión P_i que debe ser aplicada para anular este tipo de desplazamiento, entonces $\delta_i(g_i) + \delta_i(R_i) = 0$. De esta forma son determinadas las fuerzas de protensión de los tirantes para cada fase constructiva del puente.

El programa utilizado, SAP, presenta el aplicativo llamado *Non-linear stage construction* que permite al usuario establecer el proceso constructivo y calcular los resultados de casa fase, facilitando la implementación de este proceso.

Para este método es necesario tomar en cuenta las sobrecargas e construcción, así como también las posibles asimetrías del puente. Cuando el vano lateral tiene una longitud mayor o menor que mitad del vano central, se presenta una asimetría. Para estos casos, existen varios tipos de soluciones para realizar este proceso constructivo; una de ellas es el uso de contrapeso en la extremidad de menor vano (Figura 7).

Para la construcción de cada dovela, se utiliza un contrapeso que representa la diferencias entre los dos vanos a ser construidos. Al final de la construcción los contrapesos son retirados e los tirantes de estabilidad son pretendidos.
Figura 7: Solución de contrapeso para el proceso constructivo.

Otra solución es la utilización de cabos de protensión (Figura 8) que anclan la dovela de arranque a medida que el vano central este siendo construidos para evitar desequilibrios.

Figura 8: Solución de cables pretendidos para el proceso constructivo.

La solución a ser adoptada depende de cada caso; para el primer ejemplo fue adoptado la utilización de contrapeso de un lado de la estructura debido a la facilidad de implementación en el modelo estructural elegido.

4 Resultados y comparaciones

Se establece una comparación entre MAT, MAD y MAR, ya que estos métodos fueron realizados con el modelo de la estructura después de la construcción y si no se llevara en consideración las hipótesis del proceso constructivo

En esta primera comparación, se obtiene que las temperaturas del MAD y el MAR son similares, por tanto, los resultados de desplazamiento, esfuerzos y momentos son próximos (Tabla 2).
<table>
<thead>
<tr>
<th>Tirantes</th>
<th>MTA</th>
<th>MAD</th>
<th>MAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>-351.39</td>
<td>-238.72</td>
<td>-237.73</td>
</tr>
<tr>
<td>E2</td>
<td>-350.77</td>
<td>-269.95</td>
<td>-269.67</td>
</tr>
<tr>
<td>E3</td>
<td>-350.27</td>
<td>-235.96</td>
<td>-235.63</td>
</tr>
<tr>
<td>E4</td>
<td>-349.85</td>
<td>-247.88</td>
<td>-247.75</td>
</tr>
<tr>
<td>E5</td>
<td>-349.53</td>
<td>-240.08</td>
<td>-239.76</td>
</tr>
<tr>
<td>E6</td>
<td>-349.30</td>
<td>-238.18</td>
<td>-237.80</td>
</tr>
<tr>
<td>E7</td>
<td>-349.16</td>
<td>-222.81</td>
<td>-225.71</td>
</tr>
<tr>
<td>E8</td>
<td>-349.17</td>
<td>-305.59</td>
<td>-303.10</td>
</tr>
<tr>
<td>E9</td>
<td>-349.33</td>
<td>-233.25</td>
<td>-233.79</td>
</tr>
<tr>
<td>E10</td>
<td>-349.60</td>
<td>-241.99</td>
<td>-242.22</td>
</tr>
<tr>
<td>E11</td>
<td>-349.99</td>
<td>-240.54</td>
<td>-240.80</td>
</tr>
<tr>
<td>E12</td>
<td>-350.48</td>
<td>-236.87</td>
<td>-237.30</td>
</tr>
<tr>
<td>E13</td>
<td>-351.08</td>
<td>-239.68</td>
<td>-239.84</td>
</tr>
<tr>
<td>E14</td>
<td>-351.79</td>
<td>-228.80</td>
<td>-229.44</td>
</tr>
<tr>
<td>E15</td>
<td>-351.79</td>
<td>-228.80</td>
<td>-229.45</td>
</tr>
<tr>
<td>E16</td>
<td>-351.08</td>
<td>-239.68</td>
<td>-239.84</td>
</tr>
<tr>
<td>E17</td>
<td>-350.48</td>
<td>-236.87</td>
<td>-237.30</td>
</tr>
<tr>
<td>E18</td>
<td>-349.99</td>
<td>-240.54</td>
<td>-240.79</td>
</tr>
<tr>
<td>E19</td>
<td>-349.60</td>
<td>-241.99</td>
<td>-242.20</td>
</tr>
<tr>
<td>E20</td>
<td>-349.33</td>
<td>-233.25</td>
<td>-233.78</td>
</tr>
<tr>
<td>E21</td>
<td>-349.17</td>
<td>-305.59</td>
<td>-303.03</td>
</tr>
<tr>
<td>E22</td>
<td>-349.16</td>
<td>-222.81</td>
<td>-221.97</td>
</tr>
<tr>
<td>E23</td>
<td>-349.30</td>
<td>-238.18</td>
<td>-241.10</td>
</tr>
<tr>
<td>E24</td>
<td>-349.53</td>
<td>-240.08</td>
<td>-243.36</td>
</tr>
<tr>
<td>E25</td>
<td>-349.85</td>
<td>-247.88</td>
<td>-242.06</td>
</tr>
<tr>
<td>E26</td>
<td>-350.27</td>
<td>-235.96</td>
<td>-236.53</td>
</tr>
<tr>
<td>E27</td>
<td>-350.77</td>
<td>-269.95</td>
<td>-273.83</td>
</tr>
<tr>
<td>E28</td>
<td>-351.39</td>
<td>-238.72</td>
<td>-236.12</td>
</tr>
</tbody>
</table>

Tabla 2: Comparación de las temperaturas del MTA, MAD y MAR (unidades: °C)

En la Figura 9 se presenta un diagrama de comparación de esfuerzos donde se puede observar que el aumento de los esfuerzos en los tirantes que están más alejados del mástil, siendo el tirante de estabilidad aquel con el esfuerzo mayor.
Figura 9: Comparación de las fuerzas del MTA y MAD

Para los desplazamientos del tablero, los valores más próximos de cero fueron los valores obtenidos con el MAR. Esto es debido a que la forma de imponer la anulación de desplazamientos es la suposición de apoyos ficticios en la unión entre los tirantes y el tablero.

Figura 10: Comparación de los deslizamientos de MTA y MAD

Se considera apropiada la realización de la segunda comparación ya que está hecha entre los evolutivos de todos los métodos y el proceso constructivo. En el caso de los evolutivos fueron realizados en el proceso constructivo con los valores de temperatura obtenidos en los primeros métodos (Tabla 3)

En la Figura 11 se observa que los esfuerzos son bastante próximos, salvo los tirantes de estabilidad y aquellos que están en el medio del vano.
Tabla 3: Comparación de las temperaturas en los tirantes de los evolutivos de los métodos (unidades: °C)

<table>
<thead>
<tr>
<th>Tirantes</th>
<th>MTA</th>
<th>MAD</th>
<th>MAR</th>
<th>Tirantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>-351.39</td>
<td>-196.18</td>
<td>-238.72</td>
<td>-351.39</td>
</tr>
<tr>
<td>E2</td>
<td>-350.77</td>
<td>-217.13</td>
<td>-269.95</td>
<td>-350.77</td>
</tr>
<tr>
<td>E3</td>
<td>-350.27</td>
<td>-220.81</td>
<td>-235.96</td>
<td>-350.27</td>
</tr>
<tr>
<td>E4</td>
<td>-349.85</td>
<td>-229.36</td>
<td>-247.88</td>
<td>-349.85</td>
</tr>
<tr>
<td>E5</td>
<td>-349.53</td>
<td>-237.64</td>
<td>-240.08</td>
<td>-349.53</td>
</tr>
<tr>
<td>E6</td>
<td>-349.30</td>
<td>-242.85</td>
<td>-238.18</td>
<td>-349.30</td>
</tr>
<tr>
<td>E7</td>
<td>-349.16</td>
<td>-272.69</td>
<td>-222.81</td>
<td>-349.16</td>
</tr>
<tr>
<td>E8</td>
<td>-349.17</td>
<td>-262.36</td>
<td>-305.59</td>
<td>-349.17</td>
</tr>
<tr>
<td>E9</td>
<td>-349.33</td>
<td>-243.83</td>
<td>-233.25</td>
<td>-349.33</td>
</tr>
<tr>
<td>E10</td>
<td>-349.60</td>
<td>-247.17</td>
<td>-241.99</td>
<td>-349.60</td>
</tr>
<tr>
<td>E11</td>
<td>-349.99</td>
<td>-255.32</td>
<td>-240.54</td>
<td>-349.99</td>
</tr>
<tr>
<td>E12</td>
<td>-350.48</td>
<td>-259.07</td>
<td>-236.87</td>
<td>-350.48</td>
</tr>
<tr>
<td>E13</td>
<td>-351.08</td>
<td>-268.01</td>
<td>-239.68</td>
<td>-351.08</td>
</tr>
<tr>
<td>E14</td>
<td>-351.79</td>
<td>-196.40</td>
<td>-228.80</td>
<td>-351.79</td>
</tr>
<tr>
<td>E15</td>
<td>-351.79</td>
<td>-196.40</td>
<td>-228.80</td>
<td>-351.79</td>
</tr>
<tr>
<td>E16</td>
<td>-351.08</td>
<td>-268.01</td>
<td>-239.68</td>
<td>-351.08</td>
</tr>
<tr>
<td>E17</td>
<td>-350.48</td>
<td>-259.07</td>
<td>-236.87</td>
<td>-350.48</td>
</tr>
<tr>
<td>E18</td>
<td>-349.99</td>
<td>-255.32</td>
<td>-240.54</td>
<td>-349.99</td>
</tr>
<tr>
<td>E19</td>
<td>-349.60</td>
<td>-247.17</td>
<td>-241.99</td>
<td>-349.60</td>
</tr>
<tr>
<td>E20</td>
<td>-349.33</td>
<td>-243.83</td>
<td>-233.25</td>
<td>-349.33</td>
</tr>
<tr>
<td>E21</td>
<td>-349.17</td>
<td>-262.36</td>
<td>-305.59</td>
<td>-349.17</td>
</tr>
<tr>
<td>E22</td>
<td>-349.16</td>
<td>-272.69</td>
<td>-222.81</td>
<td>-349.16</td>
</tr>
<tr>
<td>E23</td>
<td>-349.30</td>
<td>-242.85</td>
<td>-238.18</td>
<td>-349.30</td>
</tr>
<tr>
<td>E24</td>
<td>-349.53</td>
<td>-237.64</td>
<td>-240.08</td>
<td>-349.53</td>
</tr>
<tr>
<td>E25</td>
<td>-349.85</td>
<td>-229.36</td>
<td>-247.88</td>
<td>-349.85</td>
</tr>
<tr>
<td>E26</td>
<td>-350.27</td>
<td>-220.81</td>
<td>-235.96</td>
<td>-350.27</td>
</tr>
<tr>
<td>E27</td>
<td>-350.77</td>
<td>-217.13</td>
<td>-269.95</td>
<td>-350.77</td>
</tr>
<tr>
<td>E28</td>
<td>-351.39</td>
<td>-196.18</td>
<td>-238.72</td>
<td>-351.39</td>
</tr>
</tbody>
</table>
Los desplazamientos no presentan valores tan próximos de cero cuando son hechos los evolutivos. Es importante destacar que los valores de temperaturas obtenidos, fueron a partir del puente construido. Cuando éstas son aplicadas al proceso constructivo del puente, se obtienen deslazamientos mayores que los anteriores.
4 Referencias

- COMBAULT, J.; Conceptual design of Bridges, 1º Simpósio Internacional de Pontes e Grandes Estruturas, São Paulo-Brasil, 2008
- EL DEBS, MOUNIR KHALIL. Introdução às pontes de concreto. 2007. Notas de Aula-Escola de Engenharia de São Carlos, Universidade de São Paulo. São Carlos
- WANG, P. H., TSEN, T. C. e YANG, C. G., initial shape of cable-stayed bridges, Computer and Structures, vol. 46, pp. 1095-1106, 1993
- WHITE, E.R., Structural aspects of cable-stayed bridge design. 1975. 1v. Tese. – Massachusetts Institute of Technology